NICTA

) Australian Government

Department of Broadband, Communications
and the Digital Economy

Australian Research Council

COMP9242 S2/2013 W01

UNSW

THE UNIVERSITY OF NEW SOUTH WALES

COMP9242
Advanced Operating Systems

S2/2012 Week 1:
Introduction to selL4

NICTA Funding and Supporting Members and Partners

Q Australian
Z fame UNSW
University e

RNy F N S0UTH Whiss NSW

‘GOVERNMENT
B2 nsunavisyor @ . ‘ Griffith QUT| THE UNIVERSITY
SYDNEY Giicenelaid W SUVERS Y — N T TBSAND

Government

Copyright Notice @
NICTA

These slides are distributed under the Creative Commons
Attribution 3.0 License

* You are free:
— to share—to copy, distribute and transmit the work
— to remix—to adapt the work

« under the following conditions:

— Attribution: You must attribute the work (but not in any way that
suggests that the author endorses you or your use of the work) as
follows:

» “Courtesy of Gernot Heiser, [Institution]”, where [Institution] is one of
“UNSW?” or “NICTA”

The complete license text can be found at
http://creativecommons.org/licenses/by/3.0/legalcode

COMP9242 S2/2013 W01 2 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Monolithic Kernels vs Microkernels OQ
NICTA

* |dea of microkernel:
— Flexible, minimal platform

— Mechanisms, not policies
— Goes back to Nucleus [Brinch Hansen, CACM’70]

Application

Syscall
User
Mode
Device
Application Driver
Kernel
Mode \

IPC, virtual memory IPC

COMP9242 S2/2013 W01 3 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

OF NEW SOUTH WAL

Microkernel Evolution ()@

NICTA
First generation Second generation Third generation
« Eg Mach ['87] « EgL4T[95] sel4[09]
Memory Objects
Low-level FS, g
Swapping r“fl:nmgor;);
Devices Iibrary
Kernel memory Kernel memory
Scheduling Scheduling Scheduling
« 180 syscalls « ~7 syscalls « ~3 syscalls
« 100 kLOC « ~10kLOC « 9kLOC
« 100 us IPC e« ~1uslIPC e 0.2-1puslIPC

COMP9242 S2/2013 W01 4 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

2nd.Generation Microkernels e
NICTA

« 1st-generation kernels (Mach, Chorus) were a failure
— Complex, inflexible, slow

« L4 was first 2G microkernel [Liedtke, SOSP’93, SOSP’95]

— Radical simplification & manual micro-optimisation

— “A concept is tolerated inside the microkernel only if moving it outside
the kernel, i.e. permitting competing implementations, would prevent the
implementation of the system’s required functionality.”

— High IPC performance
« Family of L4 kernels:
— Oiriginal GMD assembler kernel (‘95)

— Fiasco (Dresden ‘98), Hazelnut (Karlsruhe ‘99), Pistachio (Karlsruhe/
UNSW ‘02), L4-embedded (NICTA “04)

* L4-embedded commercialised as OKL4 by Open Kernel Labs
* Deployed in > 2 billion phones
— Commercial clones (PikeOS, P4, CodeZero, ...)
— Approach adopted e.g. in QNX (‘82) and Green Hills Integrity (‘90s)

COMP9242 S2/2013 W01 5 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Issues of 2G L4 Kernels @ [
NICTA

« L4 solved performance issue [Hartig et al, SOSP’97]
« Left a number of security issues unsolved

* Problem: ad-hoc approach to protection and resource management
— Global thread name space = covert channels
— Threads as IPC targets = insufficient encapsulation
— Single kernel memory pool = DoS attacks
— Insufficient delegation of authority = limited flexibility, performance

 Addressed by selL 4
— Designed to support safety- and security-critical systems

COMP9242 S2/2013 W01 6 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

selL4 Principles @

« Single protection mechanism: capabilities
— Except for time ®
« All resource-management policy at user level
— Painful to use
— Need to provide standard memory-management library
* Results in L4-like programming model
« Suitable for formal verification (proof of implementation correctness)
— Attempted since ‘70s
— Finally achieved by L4.verified project at NICTA [Klein et al, SOSP’09]

COMP9242 S2/2013 W01 7 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

selL4 Concepts @ [

« Capabilities (Caps) NICTA
— mediate access ———

» Kernel objects:
— Threads (thread-control blocks, TCBs) /2
— Address spaces (page table objects, PDs, PTs)
— |IPC endpoints (EPs, AsyncEPs) —_
— Capability spaces (CNodes) —____ @ A
— Frames U 2

— Interrupt objects

— Untyped memory

« System calls -
— Send, Wait (and variants)
— Yield

COMP9242 S2/2013 W01 8 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Capabilities (Caps)

« Token representing privileges [Dennis & Van Horn, ‘66]
— Cap = “prima facie evidence of right to perform operation(s)”

« Object-specific = fine-grained access control
— Cap identifies object = is an (opaque) object name
— Leads to object-oriented API:

err = method(cap, args);
— Privilege check at invocation time

« Caps were used in microkernels before
— KeyKOS (‘85), Mach ('87)
— EROS ('99): first well-performing cap system
— OKL4 V2.1 ('08): first cap-based L4 kernel

COMP9242 S2/2013 W01 9 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

NICTA

THE UNIVERSITY OF NEW SOUTH WALES

W selL4 Capabilities

« Stored in cap space (CSpace)
— Kernel object made up of CNodes o

— each an array of cap “slots” \

* Inaccessible to userland
— But referred to by pointers into CSpace (slot addresses)
— These CSpace addresses are called CPTRs
« Caps convey specific privilege (access rights)
- Read, Write, Grant (cap transfer) [Yes, there should be Execute!]
« Main operations on caps:
- Invoke: perform operation on object referred to by cap
» Possible operations depend on object type
- Copyl Mint/ Grant. create copy of cap with same/lesser privilege
- Movel Mutate: transfer to different address with same/lesser privilege
- Delete: invalidate slot
« Only affects object if last cap is deleted
- Revoke: delete any derived (eg. copied or minted) caps

COMP9242 S2/2013 W01 10 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Inter-Process Communication (IPC) Oe
NICTA

 Fundamental microkernel operation
— Kernel provides no services, only mechanisms

— OS services provided by (protected) user-level server processes
— invoked by IPC

Client

« sel4 IPC uses a handshake through endpoints:
— Transfer points without storage capacity

— Message must be transferred instantly send —@—)receive

* One partner may have to block
« Single copy user = user by kernel
« Two endpoint types:
— Synchronous (Endpoint) and asynchronous (AsyncEP)

COMP9242 S2/2013 W01 11 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

OF NEW SOUTH WAL

@ Synchronous Endpoint (e

NICTA
Thread, Thread,
Running Blocked Blocked Running
2 Wait (ep1_cap, ...)

Send (ep1_cap, ...) |
Wait (ep2_cap, ...) 2

Send (ep2_cap, ...)

3

« Threads must rendez-vous for message transfer
— One side blocks until the other is ready
— Implicit synchronisation
« Message copied from sender’s to receiver's message registers
— Message is combination of caps and data words
« presently max 121 words (484B, incl message “tag”)

COMP9242 S2/2013 W01 12 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

“ Asynchronous Endpoint @

NICTA

Thread, Thread,
Running Blocked Blocked Running

w = Poll (ep_cap, ...)

Send (ep_cap, ...)

Send (ep_cap, ...)

* Avoids blocking
— send transmits 1-word message, OR-ed to receiver data word

— no caps can be sent
« Receiver can poll or wait
— waiting returns and clears data word
— polling just returns data word
« Similar to interrupt (with small payload, like interrupt mask)

COMP9242 S2/2013 W01 13 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ Receiving from Sync and Async Endpoints) ®
NICTA

Client Driver

Server with synchronous and asynchronous interface
« Example: file system
— synchronous (RPC-style) client protocol
— asynchronous naotifications from driver
« Could have separate threads waiting on endpoints
— forces multi-threaded server, concurrency control
* Alternative: allow single thread to wait on both EP types
— Mechanism:
* AsyncEP is bound to thread with BindAEP() syscall
» thread waits on synchronous endpoint
« async message delivered as if been waiting on AsyncEP

COMP9242 S2/2013 W01 14 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Oe

NICTA

@ Sync Endpoints are Message Queues

Kernel

First invocation « EP has no sense of direction

queues caller _
 May queue senders or receivers

Furtherdgalletrs of — never both at the same time!
same direction o
queue behind Communication needs 2 EPs!

COMP9242 S2/2013 W01 15 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

NEW SOUTH WAL

@ Client-Server Communication OO
NICTA

* Asymmetric relationship:

— Server widely accessible, clients not

— How can server reply back to client (distinguish between them)?
« Client can pass (session) reply cap in first request

— server needs to maintain session state
» sel4 solution: Kernel provides single-use reply cap

— only for Call operation (Send+Wait)

— allows server to reply to client

— cannot be copied/minted/re-used but can be moved

— one-shot (automatically destroyed after first use)

COMP9242 S2/2013 W01 16 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Y OF NEW SOUTH WAL

NICTA
Client Kernel Server
Wait(ep,&rep)
Call(ep,...)
mint rep
deliver to server
process
Send(rep,...)
deliver to client
destroy rep
process process

COMP9242 S2/2013 W01 17 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ Identifying Clients e

Stateful server serving multiple clients
 Must respond to

_ . Server
correct client Client, e
— Ensured by reply cap Coo cnte v
« Must associate request Client, | Client, |/
with correct state Cos state

* Could use separate EP per client
— endpoints are lightweight (16 B)
— but requires mechanism to wait on a set of EPs (like select)
* Instead, selL4 allows to individually mark (“badge”) caps to same EP
— server provides individually badged caps to clients
— server tags client state with badge
— kernel delivers badge to receiver on invocation of badged caps

COMP9242 S2/2013 W01 18 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ IPC Mechanics: Virtual Registers e
NICTA

» Like physical registers, virtual registers are thread state

— context-switched by kernel

— implemented as physical registers or fixed memory location
 Message registers

— contain message transferred in IPC

— architecture-dependent subset mapped to physical registers

 5on ARM, 3 on x86

— library interface hides details

— 1t message register is special, contains message tag
« Data word for asynchronous IPC

— accumulates async messages (reset by Wait)

— as with interrupts, information is lost if not collected timely
 Reply cap

— overwritten by next receive!

— can move to CSpace with cspace_save_reply_cap()

COMP9242 S2/2013 W01 19 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ IPC Message Format (1@

Raw data

Caps (on Send) CSpace reference for receiving

Tag Message Badges (on Receive) caps (Receive only)

Caps # Msg

Label unwrapped Caps Length

Meaning defined
by IPC protocol
(Kernel or user)

Bitmap indicating
caps which had
badges extracted

Caps sent
or received

Note: Don’t need to deal with this explicitly for project

20 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ Client-Server IPC Example O

Load into Client
tag reqister

sell4_Messagelnfo_t tag = seLL.4_Messagelnfo_new(O, O, O, 1);
sel4_SetTag(tag);

register #0 seL4_Call(server_c, tag);

Server

selL.4_Word addr = ut_alloc(sel.4_EndpointBits);
err = cspace_ut_retype_addr(tcb_addr, sel.4_EndpointObject,
sell4_EndpointBits, cur_cspace, &ep_cap)
sell4_CPtr cap = cspace_mint_cap(dest, cur_cspace, ep_cap, sel.4_all_rights,
selLl4_CapData_MakeBadge_ne - .
Insert EP into }

seL4_Word badge; CSpace
seL4_Messagelnfo_t msg = seL.4_Wait(ep, &badge); _
- € —vmse =@ &) [CaplsbadgedO]

sell4_Messagelnfo_t reply = sel.4_Messagelnfo_new(O, O, O, O);
sell4_Reply(reply);

Allocate EP and retype 1

Implicit use
of reply cap

21 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ Server Saving Reply Cap @

Server

selLl4_Word addr = ut_alloc(selL4_EndpointBits);
err = cspace_ut_retype_addr(tcb_addr, sel.4_EndpointObject,
selL4_EndpointBits, cur_cspace, &ep_cap)
seLL4_CPtr cap = cspace_mint_cap(dest, cur_cspace, ep_ca
selLL4_CapData_MakeBadge(0));

Save reply cap
in CSpace

_all_rights,

selL4_Word badge;
sel.4_MessageInfo_t msg = sel.4_Wait
sell4_CPtr slot = cspace_save_reply_cap(cur_cspace);

selLL4_Messagelnfo_t reply = seLL4_Messagelnfo_new(O, O, O, O);
seL4_Send(slot, reply;
cspace_free_cslot(slot); }

Explicit use
of reply cap

Reply cap no
longer valid

COMP9242 S2/2013 W01 22 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ IPC Operations Summary @ [

 Send (ep_cap, ...), Wait (ep_cap, ...), Wait (aep_cap, ...) NICTA
— blocking message passing
— needs Write, Read permission, respectively
« NBSend (ep_cap, ...)
— discard message if receiver isn’t ready
e Call (ep_cap, ...)
— equivalent to Send (ep_cap,...) + reply-cap + Wait (ep_cap,...)
 Reply (...)
— equivalent to Send (rep_cap, ...)
 ReplyWait (ep_cap, ...) Need error
— equivalent to Reply (...) + Wait (ep_cap, ...) handling
— purely for efficiency of server operation protocol !

Notify (aep_cap, ...), Poll (aep_cap, ...)
— non-blocking send / check for message on AsyncEP

No failure notification where this reveals info on other entities!

COMP9242 S2/2013 W01 23 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

€ sw» Derived Capabilities Oe

NICTA

« Badging is an example of capability derivation
« The I/int operation creates a new, less powerful cap
— Can add a badge
o Mint (Cwe,) — Cwo
— Can strip access rights
« eg WR—R/O
* Granting transfers caps over an Endpoint
— Delivers copy of sender’s cap(s) to receiver
» reply caps are a special case of this
— Sender needs Endpoint cap with Grant permission
— Receiver needs Endpoint cap with Write permission
» else Write permission is stripped from new cap
* Retyping
— Fundamental operation of seL4 memory management
— Details later...

COMP9242 S2/2013 W01 24 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

G wo seL4 System Calls e

NICTA

* Notionally, seL4 has 6 syscalls:
- Yield(): invokes scheduler
 only syscall which doesn’t require a cap!
- Send(), Receive() and 3 variants/combinations thereof
» Notify() is actually not a separate syscall but same as Send()
— This is why | earlier said “approximately 3 syscalls” ©

« All other kernel operations are invoked by “messaging”
— Invoking Send()/Receive() on an object cap
— Each object has a set of kernel protocols
« operations encoded in message tag
e parameters passed in message words
— Mostly hidden behind “syscall” wrappers

COMP9242 S2/2013 W01 25 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

(0

seL4 Memory Management Principles (e
NICTA

(Lo
3

Memory (and caps referring to it) is fyped:
— Untyped memory:

* unused, free to Retype into something else
— Frames:

* (can be) mapped to address spaces, no kernel semantics
— Rest: TCBs, address spaces, CNodes, EPs
» used for specific kernel data structures
« After startup, kernel never allocates memory!
— All remaining memory made Untyped, handed to initial address space
« Space for kernel objects must be explicitly provided to kernel
— Ensures strong resource isolation
« Extremely powerful tool for shooting oneself in the foot!
— We hide much of this behind the cspace and ut allocation libraries

COMP9242 S2/2013 W01 26 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

© s»» Capability Derivation (Jo
NICTA

 Copy, Mint, Mutate, Revoke are invoked on CNodes

Mint(€C%» , dest, src, rights, ¥)

O
A

&/

i,

— CNode cap must provide appropriate rights

* Copy takes a cap for destination
— Allows copying of caps between CSpaces
— Alternative to granting via IPC (if you have privilege to access Cspace!)

COMP9242 S2/2013 W01 27 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@m Cspace Operations o

extern cspace _t * cspace_create(int levels); /* either 1 or 2 level */
extern cspace_err_t cspace_destroy(cspace t *c);

extern seL4 CPtr cspace copy_cap(cspace_t *dest, cspace t *src,
seL4 CPtr src_cap, seL4 CapRights rights);

extern seL4 CPtr cspace_mint_cap(cspace t *dest, cspace _t *src,
seL4 CPtr src_cap, seL4 CapRights rights,
seL4 CapData badge);

extern seL4 CPtr cspace_move cap(cspace_t *dest, cspace t *src,
seL4 CPtr src_cap);

extern cspace_err_t cspace _delete cap(cspace_t *c, seL4 CPtr cap);

extern cspace_err_t cspace _revoke cap(cspace t *c, seL4 CPtr cap);

28 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

cspace and ut libraries (1@
NICTA

User-level 0S
Personality

System Calls

Library Calls

ut_alloc() cspace_create()
ut_free() cspace_destroy()

/1

Wraps messy
Cspace tree &
slot management

Manages slab
of Untyped Extend for

own needs!

COMP9242 S2/2013 W01 29 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@)

o

seL4 Memory Management Approach O

Strong isolation,
No shared kernel
resources

Addr
Space

Resources fully
delegated, allows
autonomous
operation

Addr Addr Addr
Space Space Space

RM
Data
RAM | Kernel GRM
Data Data
I

©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

(0

Memory Management Mechanics: Retype

G
3

Co
Retype (Untyped, 27)

= Cw
Retype (Frame, 2?) Retype (Untyped, 27)

Retype (CNode, 2™, 2")

Retype (TCB, 2")

Revoke()

dd " " \ada

el —~

F, Fj g A A
O ryy Ef#' O A

A selL4 Address Spaces (VSpaces) (1O

NICTA

« Very thin wrapper around hardware page tables

— Architecture-dependent

— ARM and x86 are very similar

« Page directories (PDs) map page tables,

page tables (PTs) map pages
A VSpace is represented
by a PD object:
— Creating a PD (by Retype)
creates the VSpace

— To use it must be associated
with “ASID pool”
* We give example code

— Deleting the PD deletes
the VSpace

=17
7

Page_Map(PT)

=

~2

PageTable_Map(PD)

COMP9242 S2/2013 W01 32 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

A Address Space Operations (1@
NICTA

cap to level 1

Sample code
page table

we provide

selLl4_Word frame_addr =ut_alloc(selL4_PageBi
rr = cspace_ut_retype_addr(frame_add _ARM_Page,
selL4_ARM_PageBits, cur ce, &frame_cap);

map_page(frame_cap, pd_cap, OxA0000000, sel.4_AllRights,
sell4_ARM_Default_ VMAttributes);
bzero((void *)0OxA0000000, PAGESIZE);

seL4_ARM_Page_Unmap(frame_cap);
cspace_delete_cap(frame_cap)
ut_free(frame_addr, seL.4_PageBits);

« Each mapping has:
— virtual_address, phys _address, address_space and frame_cap
— address_space struct identifies the level 1 page directory cap
— you need to keep track of (frame_cap, PD_cap, v_adr, p_adr)!

COMP9242 S2/2013 W01 33 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

A Mapping Same Frame Twice: Shared Memory O

sell4_CPtr new_frame_cap = cspace_copy_cap(cur_cspace, cur_cspace,
existing frame_cap,
sell4_AllIRights);

map_page(new_frame_cap, pd_cap, OxAO0000000, seLL4_AllRights,
sell4_ARM_Default_VMAttributes);
bzero((void *)0OxA0O000000, PAGESIZE);

sell4_ARM_Page_Unmap(existing frame_cap);
cspace_delete_cap(existing_frame_cap)
sel.4_ARM_Page_Unmap(new_frame_cap);
cspace_delete_cap(new_frame_cap)
ut_free(frame_addr, selLl4_PageBits);

« Each mapping requires its own frame cap even for the same frame

34 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

A Memory Management Caveats (Jo
NICTA

* The object manager handles allocation for you
 However, it is very simplistic, you need to understand how it works
« Simple rule (it's buddy-based):

— Freeing an object of size n: you can allocate new objects <= size n

— Freeing 2 objects of size n does not mean that you can allocate an
object of size 2n.

Object size (Bytes)

Frame 212
Page directory 214
Endpoint 24
Cslot 24
TCB 29
Page table 210

* All kernel objects must be size aligned!

COMP9242 S2/2013 W01 35 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

A Memory Management Caveats o

NICTA
« Objects are allocated by Retype() of Untyped memory by selL4 kernel
— The kernel will not allow you to overlap objects But debugging

« ut_alloc and ut_free() manage user-level's view of nightmare if
Untyped allocation. you try!!
— Major pain if kernel and user’s view diverge
— TIP: Keep objects address and CPtr together.
» Be careful with allocations!

« Don't try to allocate all of physical
/ \ memory as frames, as you need
more memory for TCBs, endpoints
Untyped Memory 27°B etc.

* Your frametable will eventually
integrate with ut_alloc to manage
the 4K untyped size.

8 frames
COMP9242 S2/2013 W01 36 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

3 Threads OO
NICTA

« Theads are represented by TCB objects

« They have a number of attributes (recorded in TCB):
— VSpace: a virtual address space
« page directory reference
* multiple threads can belong to the same VSpace
— CSpace: capability storage
« CNode reference (CSpace root) plus a few other bits
— Fault endpoint
« Kernel sends message to this EP if the thread throws an exception
— |PC buffer (backing storage for virtual registers)
— stack pointer (SP), instruction pointer (IP), user-level registers
— Scheduling priority
— Time slice length (presently a system-wide constant)
* Yes, this is broken! (Will be fixed soon...)

 These must be explicitly managed
— ... we provide an example you can modify

COMP9242 S2/2013 W01 37 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

3 Threads @
NICTA

Creating a thread
« Obtain a TCB object
« Set attributes: Configure()
— associate with VSpace, CSpace, fault EP, prio, define IPC buffer

« Set SP, IP (and optionally other registers): WriteRegisters()
— this results in a completely initialised thread
— will be able to run if resume_target is set in call, else still inactive

« Activated (made schedulable): Resume()

COMP9242 S2/2013 W01 38 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

3 Creating a Thread in Own AS and cspace _t O

static char stack[100];
int thread_fct() {
while(1);
return O;
}
/* Allocate and map new frame for IPC buffer as before */
selLl4_Word tcb_addr = ut_alloc(selL.4_TCBBits);

err = cspace_ut_retype_addr(tcb_addr, seL.4_TCBODbject, seL.4_TCBBits,
cur_cspace, &tcb_cap)

err = seL.4_TCB_Configure(tcb_cap, FAULT_EP_CAP, PRIORITY,
curspace->root_cnode, seLL4NilData,
selL4_CaplnitThreadPD, seL.4_NilData,
PROCESS_IPC_BUFFER, ipc_buffer_cap);

selLl4_UserContext context = { .pc = &thread, .sp = &stack};

selLl4_TCB_WriteRegisters(tcb_cap, 1, O, 2, &context);

If you use threads, write a library to create and destroy them.

39 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

3 Threads and Stacks @
NICTA

« Stacks are completely user-managed, kernel doesn'’t care!
— Kernel only preserves SP, IP on context switch
« Stack location, allocation, size must be managed by userland
« Beware of stack overflow!
— Easy to grow stack into other data
« Pain to debug!
— Take special care with automatic arrays!

Stack 1 < ‘ ‘ Stack 2 |

fO{
int buf[100007;

COMP9242 S2/2013 W01 40 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

3 Creating a Thread in New AS and cspace t @

/* Allocate, retype and map new frame for IPC buffer as before
* Allocate and map stack???
* Allocate and retype a TCB as before
* Allocate and retype a seLL4_ARM_PageDirectoryObject of size sel.4_PageDirBits
* Mint a new badged cap to the syscall endpoint
%
/
cspace_t * new_cpace = ut_alloc(sel.4_TCBBits);

char *elf base = cpio_get_file(_cpio_archive, “test”)->p_base;
err = elf load(new_pagedirectory_cap, elf_base);
unsigned int entry = elf_getEntryPoint(elf_base);

err = seLL4_TCB_Configure(tcb_cap, FAULT_EP_CAP, PRIORITY,
new_cspace->root_cnode, sel.4NilData,
new_pagedirectory_cap, sel.4 NilData,
PROCESS_IPC_BUFFER, ipc_buffer_cap);

selL4_UserContext context = {.pc = entry, .sp = &stack};

selLl4_TCB_WriteRegisters(tcb_cap, 1, O, 2, &context);

COMP9242 S2/2013 W01 41 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

3 selL4 Scheduling

» selL4 uses 256 hard priorities (0—255)
— Priorities are strictly observed
— The scheduler will always pick the highest-prio runnable thread
— Round-robin scheduling within prio level

» Aim is real-time performance, not fairness

— Kernel itself will never change the prio of a thread
— Achieving fairness (if desired) is the job of user-level servers

COMP9242 S2/2013 W01 42 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

Qe

NICTA

THE UNIVERSITY OF NEW SOUTH WALES

3 Exception Handling e
NICTA

« A thread can trigger different kinds of exceptions:
— invalid syscall
* may require instruction emulation or result from virtualization
— capability fault
» cap lookup failed or operation is invalid on cap
— page fault
« attempt to access unmapped memory
* may have to grow stack, grow heap, load dynamic library, ...
— architecture-defined exception
 divide by zero, unaligned access, ...

« Results in kernel sending message to fault endpoint
— exception protocol defines state info that is sent in message

» Replying to this message restarts the thread

COMP9242 S2/2013 W01 43 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

3 Exception Handling (1@
NICTA

Handler performs
appropriate action

(e.g. map page).

Exception triggered.
Kernel fakes message
from thread to handler

xception
Handler

Kernel intercepts
message and
restarts thread

to restart thread

Handler replies }

COMP9242 S2/2013 W01 44 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

“ Interrupt Management (Jo

NICTA

« sel4 models IRQs as messages sent to an AsynckEP
— Interrupt handler has Receive cap on that EP

« 2 special objects used for managing and acknowledging interrupts:
— Single IRQControl object
 single IRQControl cap provided by kernel to initial VSpace
« only purpose is to create IRQHandler caps
— Per-IRQ-source IRQHandler object
* Interrupt association and dissociation
* interrupt acknowledgment

= IRQControl
\/ /@W Get(usb)
‘% IRQHandler
—Cw

COMP9242 S2/2013 W01 45 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

@ Interrupt Handling (1@

NICTA

« |RQHandler cap allows driver to bind AsyncEP to interrupt

« Afterwards:
— AsyncEP is used to receive interrupt
— IRQHandler is used to acknowledge interrupt

IRQHandler
—Cw SetEndpoint(aep)

Wait(aep)
Ack(handler)

sell4_IRQHandler interrupt = cspace_irq _control_get_cap(cur_cspace,

selL4_CapIRQControl, irq_number);
seL4_IRQHandler_SetEndpoint(interrupt, async_ep_cap);
seL4_TRQHander_ack(interrupt);

unmask IRQ

COMP9242 S2/2013 W01 46 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

Ack first to }

2 Device Drivers

* Drivers do three things:
— Handle interrupts (already explained)
— Communicate with rest of OS (IPC + shared memory)
— Access device registers
* Device register access
— Devices are memory-mapped on ARM
— Have to find frame cap from bootinfo structure
— Map the appropriate page in the driver's VSpace

device_vaddr = map_device(OxAO0000000, (1 << sel4_PageBits));

*((void *) device_vaddr=..,;

Magic device
register access

COMP9242 S2/2013 W01 47 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License

NICTA

THE UNIVERSITY OF NEW SOUTH WALES

Project Platform: i.MX6 Sabre Lite

-~

-

seL4 DebugPutChar()

Serial Port

/

MO — serial over LAN

1 GiB
ARMV7 Memory
Cortex A9
CPU Timer &
other
devices

Ethernet

for userlevel apps

M6 — Network File

)

System (NFS)

48 ©2011 Gernot Heiser UNSW/NICTA. Distributed under Creative Commons Attribution License UNSW

